Refine your search�ソスF     
Report No.
 - 

Temperature measurement for in-situ crack monitoring under high-frequency loading

Naoe, Takashi   ; Xiong, Z.*; Futakawa, Masatoshi  

A mercury target for neutron source (made of 316L SS) suffers not only proton and neutron radiation damage, but also cyclic impact stress caused by pressure waves. In the previous study, we carried out an ultrasonic fatigue test to investigate the gigacycle fatigue strength of 316L SS, concluding that specimen surface temperature rose abruptly more than 300$$^{circ}$$C just before failure. In this study, to clarify the mechanism of the temperature rise, we measured temperature distribution with a thermography during the fatigue test. The experimental results showed that the temperature rose locally only at the crack tip and the peak position moved with the crack propagation. We also carried out a nonlinear structural analysis by LS-DYNA to estimate the temperature rise with strain energy of elements. The analytical result showed that the heat due to plastic deformation at the crack tip is dominant for the temperature rise rather than the friction between crack surface.

Accesses

:

- Accesses

InCites™

:

Percentile:58.44

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.