Refine your search:     
Report No.
 - 

Modeling of Phosphorus Transport by Interstitial Dumbbell in $$alpha$$-Iron Using First-Principles-Based Kinetic Monte Carlo

Ebihara, Kenichi   ; Suzudo, Tomoaki   ; Yamaguchi, Masatake   

In order to evaluate grain boundary (GB) phosphorous (P) segregation in nuclear reactor pressure vessel steels under irradiation, the rate-theory model based on first-principles calculations is developed. In this study, we evaluated the diffusion coefficient of the mixed interstitial dumbbell of a P atom and an iron(Fe) atom using a kinetic Monte Carlo (kMC) simulation based on first-principles calculations. The evaluated diffusion coefficient was almost the same with the diffusion coefficient of P atoms which migrate via octahedral interstitial sites, and was much faster than that for P transport by vacancies. Furthermore, from the simulation of the irradiation induced GB P segregation using the model which was modified to include P atoms of octahedral interstitial sites, it was found that the boundary condition at GB is not valid for P atoms of octahedral interstitial sites

Accesses

:

- Accesses

InCites™

:

Percentile:38.56

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.