Refine your search:     
Report No.

Study on effects of coupled phenomenon on long-term behavior for crystalline rock; FY2015 (Contract research)

Ichikawa, Yasuaki*; Kimoto, Kazushi*; Matsui, Hiroya ; Kuwabara, Kazumichi; Ozaki, Yusuke 

It is important to evaluate the stability of a repository for high-level radioactive waste not only during the design, construction and operation phases, but also during the post-closure period, for time frames likely exceeding several millennia or longer. The rock mass around the tunnels could be deformed through time in response to time dependent behavior. On the other hand, it was revealed that the chemical reaction of groundwater in a rock had an influence on the long-term behavior. An evaluation of the microcracks to have an influence on this mechanical and chemical coupled phenomena should be worked on chiefly. In fiscal year 2015, using a laser Doppler vibrometer that extends a frequency band up to 20 MHz, and measuring the surface wave transmitted through the granite specimens were estimated group velocity. As a result, group velocity until 100 kHz $$sim$$ 500 kHz, revealed that tends to decrease while vibrating. The group speed estimate from a group delay was shown to be easier than the estimate by wave number - frequency spectrum. This is because in order to improve reliability, the estimated frequency band is by using a spatially averaged waveform. As a result obtained, in the case of the modeling by the viscoelastic theory of the granite and a microcrack nondestructiveness evaluation, it is thought that it is useful information in the future. In order to use the knowledge of this study, there is a need to clarify the correspondence between the microscopic properties of the medium such as a crack and crystal grain and the change of the group velocity.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.