Refine your search:     
Report No.
 - 

Verification of phase transition/relaxation of SiO$${}_{2}$$ glass at high-PT condition by in-situ neutron diffraction

Hattori, Takanori   ; Sano, Asami   ; Inamura, Yasuhiro  ; Yagafarov, O.*; Katayama, Yoshinori*; Chiba, Ayano*; Otomo, Toshiya*; Funakoshi, Kenichi*; Abe, Jun*; Machida, Shinichi*; Okazaki, Nobuo*

SiO$${}_{2}$$ glass consists of SiO$${}_{4}$$ tetrahedra which are mutually connected and forms the many-membered ring. Thus, the glass has large void in its structure, and therefore marked densification is expected under pressure. Actually, it is known that the density increases by 20% on compression to 8 GPa, accompanying the change in the intermediate range order. The density goes back to the original value by decompression, whereas the high-density state is retained at ambient condition once the structure is relaxed by being heated at high pressures. In this study, the mechanism of the densification at room-temperature and high-temperature has been investigated by in-situ high-pressure neutron diffraction at high-pressure neutron beamline PLANET in J-PARC. Then, we have constructed 3-dimensional atomic arrangements by Reverse Monte Carlo simulation, coupling with previously reported X-ray data. In this talk, the mechanism of densification at room-temperature and high-temperature and their differences will be discussed based on the obtained atomic arrangements.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.