Refine your search:     
Report No.

Dynamic behavior of secondary electrons produced by a high-energy electron in liquid water

Kai, Takeshi  ; Yokoya, Akinari*; Fujii, Kentaro*; Watanabe, Ritsuko*

It is thought to that the biological effects such as cell death or mutation are induced by complex DNA damage which are formed by several damage sites within a few nm. We calculated dynamic behavior of secondary electrons produced by primary electron and positon of high energy in water whose composition ratio is similar to biological context. The secondary electrons induce the ionization or electronic excitation near the parent cations. The decelerated electrons about 10% are distributed to their parent cations by the attractive Coulombic force. From the results, we predicted the following formation mechanism for the complex DNA damage. The electrons ejected from DNA could induce the ionization or the electronic excitation within the DNA. The electrons attracted by the Coulombic force are pre-hydrated in water layer of the DNA. The pre-hydrated electrons could induce to the DNA damage by dissociative electron transfer. As the results, the complex DNA damage with 1 nm could be formed by the interaction of not only the primary electron or positon but also the secondary electrons.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.