検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Two-body wave functions and compositeness from scattering amplitudes

散乱振幅から得られる2体状態波動関数と複合性

関原 隆泰

Sekihara, Takayasu

本講演では、ハドロン複合性の物理的意味と表式を説明し、有効模型における理論計算を示す。特に、束縛状態の2体状態波動関数が散乱振幅の共鳴極の留数に対応する事を示す。これは、リップマン-シュウィンガー方程式を共鳴極上で解くことが束縛状態の波動関数を得る事と同等である、と意味する。続いて、$$Lambda (1405)$$, $$N (1535)$$, $$N (1650)$$等の、カイラルユニタリー模型でダイナミカルに生成される共鳴状態の複合性を評価し、これらの内部構造を複合性から議論する。

In this contribution, I introduce the physical meaning of the compositeness, its expression, and theoretical evaluation in effective models. In particular, we show that the two-body wave function of the bound state corresponds to the residue of the scattering amplitude at the bound state pole, which means that solving the Lippmann-Schwinger equation at the bound state pole is equivalent to evaluating the two-body wave function of the bound state. Then, we evaluate the compositeness for the so-called dynamically generated resonances in the chiral unitary approach, such as $$Lambda (1405)$$, $$N (1535)$$, and $$N (1650)$$, and investigate their internal structure in terms of the hadronic molecular components.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.