Refine your search:     
Report No.

Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel

Abe, Satoshi ; Ishigaki, Masahiro ; Shibamoto, Yasuteru ; Yonomoto, Taisuke 

The Japan Atomic Energy Agency has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry system. The quadrupole mass spectrometer system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k-$$varepsilon$$ model and SST k-$$omega$$ model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.