Refine your search:     
Report No.
 - 

Development of fuel temperature calculation code "FTCC" for high temperature gas-cooled reactors

Inaba, Yoshitomo  ; Isaka, Kazuyoshi; Shibata, Taiju 

In order to ensure the thermal integrity of fuel in High Temperature Gas-cooled Reactors (HTGRs), it is necessary that the maximum fuel temperature in normal operation is to be lower than a thermal design target. In the core thermal-hydraulic design of block-type HTGRs, the maximum fuel temperature should be evaluated considering data such as core geometry and specifications, power density and neutron fluence distributions, and core coolant flow distribution. The fuel temperature calculation code used in the design stage of the High Temperature engineering Test Reactor (HTTR) presupposes to run on UNIX systems, and its operation and execution procedure are complicated and are not user-friendly. Therefore, a new fuel temperature calculation code, named FTCC, which has a user-friendly system such as a simple and easy operation and execution procedure, was developed. This report describes the calculation objects and models, the basic equations, the strong points (improvement points from the HTTR design code), the code structure, the using method of FTCC, and the result of a validation calculation with FTCC. The calculation result obtained by FTCC provides good agreement with that of the HTTR design code, and then FTCC will be used as one of the design codes for high temperature gas-cooled reactors. In addition, the effect of hot spot factors and fuel cooling forms on reducing the maximum fuel temperature is investigated with FTCC. As a result, it was found that the effect of center hole cooling for hollow fuel compacts and gapless cooling with monolithic type fuel rods on reducing the temperature is very high.

Acecsses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.