Refine your search:     
Report No.

First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions; Toward identification of superheavy elements via mass spectroscopy

Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Arai, Fumiya*; MacCormick, M.*; Murray, I.*; Haba, Hiromitsu*; Jeong, S.*; Kimura, Sota*; Koura, Hiroyuki ; Miyatake, Hiroari*; Morimoto, Koji*; Morita, Kosuke*; Osawa, Akira*; Rosenbusch, M.*; Reponen, M.*; S$"o$derstr$"o$m, P.-A.*; Takamine, Aiko*; Tanaka, Taiki*; Wollnik, H.*

Using a multireflection time-of-flight mass spectrograph located after a gas cell coupled with the gas-filled recoil ion separator GARIS-II, the masses of several $$alpha$$-decaying heavy nuclei were directly and precisely measured. The nuclei were produced via fusion-evaporation reactions and separated from projectilelike and targetlike particles using GARIS-II before being stopped in a helium-filled gas cell. Time-of-flight spectra for three isobar chains, $$^{204}$$Fr-$$^{204}$$Rn-$$^{204}$$At-$$^{204}$$Po, $$^{205}$$Fr- $$^{205}$$Rn-$$^{205}$$At-$$^{205}$$Po-$$^{205}$$Bi, and $$^{206}$$Fr-$$^{206}$$Rn-$$^{206}$$At, were observed. Precision atomic mass values were determined for $$^{204-206}$$Fr, $$^{204,205}$$Rn, and $$^{204,205}$$At. Identifications of $$^{205}$$Bi, $$^{204,205}$$Po, $$^{206}$$Rn, and $$^{206}$$At were made with N$$leq$$10 detected ions, representing the next step toward use of mass spectrometry to identify exceedingly low-yield species such as superheavy element ions.



- Accesses




Category:Physics, Nuclear



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.