Refine your search:     
Report No.
 - 

Fission study using multi-nucleon transfer reaction at JAEA tandem

Nishio, Katsuhisa   

This talk will discuss the use of multi-nucleon transfer (MNT) reactions to study fission properties of multitude exotic nuclei in the neutron-rich actinide region. Most of these nuclei cannot be accessed by the traditional method of complete-fusion reactions. The MNT transfer channels of the $$^{18}$$O+$$^{232}$$Th reaction were used to study fission of fourteen nuclei $$^{231,232,233,234}$$Th, $$^{232,233,234,235,236}$$Pa, and $$^{234,235,236,237,238}$$U. Fission fragment mass distributions (FFMDs) are measured for each transfer channel. In particular, the FFMDs of $$^{234}$$Th and $$^{234,235,236}$$Pa were measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. By using the same method, the measurements with $$^{238}$$U, $$^{237}$$Np, $$^{248}$$Cm, and $$^{249}$$Cf targets were recently performed. The obtained FFMDs are compared with a calculation based on the fluctuation-dissipation model, where effect of multi-chance fission (neutron evaporation prior to fission) was considered. It was found that multi-chance fission has significant role on the shape of FFMD, particularly at the high-excitation energies.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.