Refine your search:     
Report No.
 - 

Stability and synthesis of superheavy elements; Fighting the battle against fission - Example of $$^{254}$$No

Lopez-Martens, A.*; Henning, G.*; Khoo, T. L.*; Seweryniak, D.*; Alcorta, M.*; Asai, Masato; Back, B. B.*; Bertone, P. F.*; Boilley, D.*; Carpenter, M. P.*; Chiara, C. J.*; Chowdhury, P.*; Gall, B.*; Greenlees, P. T.*; Gurdal, G.*; Hauschild, K.*; Heinz, A.*; Hoffman, C. R.*; Janssens, R. V. F.*; Karpov, A. V.*; Kay, B. P.*; Kondev, F. G.*; Lakshmi, S.*; Lauritsen, T.*; Lister, C. J.*; McCutchan, E. A.*; Nair, C.*; Piot, J.*; Potterveld, D.*; Reiter, P.*; Rowley, N.*; Rogers, A. M.*; Zhu, S.*

Fission barrier height and its angular-momentum dependence have been measured for the first time in the nucleus with the atomic number greater than 100. The entry distribution method, which can determine the excitation energy at which fission starts to dominate the decay process, was applied to $$^{254}$$No. The fission barrier of $$^{254}$$No was found to be 6.6 MeV at zero spin, indicating that the $$^{254}$$No is strongly stabilized by the nuclear shell effects.

Accesses

:

- Accesses

InCites™

:

Percentile:47.11

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.