Refine your search:     
Report No.

Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

Huang, B.*; Satake, Shinsuke*; Kanno, Ryutaro*; Sugama, Hideo*; Matsuoka, Seikichi 

The drift kinetic equation describes the collisional (neoclassical) transport in plasmas. Recently, a novel radially-local approximation of the drift kinetic equation, which is called the zero orbit width (ZOW) model, is proposed. In this work, as a numerical verification of the neoclassical transport based on the ZOW model, we perform a series of benchmarks of the neoclassical transport and the parallel flow in three helical magnetic configurations using various types of radially-local approximation models including the ZOW model. We found that the neoclassical transport of the ZOW model can reproduce that based on the other models when the radial electric field and thus the $$E times B$$ drift is large. Also, it is demonstrated that an unphysical large radial transport, which arises in the neoclassical transport of the other models when the $$E times B$$ drift is small and compared to the magnetic drift, can be mitigated in the ZOW model.



- Accesses




Category:Physics, Fluids & Plasmas



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.