Refine your search:     
Report No.
 - 

Photoexcited Ag ejection from a low-temperature He cluster; A Simulation study by nonadiabatic Ehrenfest ring-polymer molecular dynamics

Seki, Yusuke*; Takayanagi, Toshiyuki*; Shiga, Motoyuki   

Ring-polymer molecular dynamics (RPMD) simulations have been performed to understand the photoexcitation dynamics of the Ag atom embedded in a low-temperature cluster consisting of 500 helium atoms, after the electronic excitation of the Ag atom. Along the RPMD trajectory the time evolution of the electronic wavefunction within the spin-orbit $$^{2}$$P manifold is calculated, whereby the time-dependent Schr$"o$dinger equation and the RPMD equation of motion are coupled, $`a$ la Ehrenfest mean field approach. It is found from the simulations that the Ag atom is mostly ejected from the helium cluster with the average time of 100 ps after photoexcitation. The average velocity of the ejected Ag atom is estimated to be 60-70 m/s. These results are qualitatively in line with previous experimental findings.

Accesses

:

- Accesses

InCites™

:

Percentile:35.36

Category:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.