Refine your search:     
Report No.

Origin of tension-compression asymmetry in ultrafine-grained fcc metals

Tsuru, Tomohito

A new mechanism of anomalous tension/compression (T/C) asymmetry in ultrafine-grained (UFG) metals is proposed using large-scale atomistic simulations and dislocation theory. Unlike coarse-grained metals, UFG Al exhibits remarkable T/C asymmetry of the yield stress. The atomistic simulations reveal that the yield event is not related to intragranular dislocations but caused by dislocation nucleation from the grain boundaries (GBs). The dislocation core structure associated with the stacking fault energy in Al is strongly affected by the external stress compared with Cu; specifically, high tensile stress stabilizes the dissociation into partial dislocations. These dislocations are more likely to be nucleated from GBs and form deformation twins from an energetic viewpoint. The new mechanism, which is completely different from well-known mechanisms for nanocrystalline and amorphous metals, is unique to high-strength UFG metals and can explain the difference in T/C asymmetry between UFG Cu and Al.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.