Refine your search:     
Report No.

Some characteristics of gas-liquid two-phase flow in vertical large-diameter channels

Shen, X.*; Schlegel, J. P.*; Hibiki, Takashi*; Nakamura, Hideo

Two phase flows in large-diameter channels are important to efficiently and safely transfer mass and energy in a wide variety of applications including nuclear power plants. Two-phase flows in vertical large-diameter channels, however, show much more complex multi-dimensional nature than those in small diameter channels. Various constitutive equations are required to mathematically close the model to predict two-phase flows with two-fluid model. Validations of the constitutive equations require extensive experiment effort. This paper summarizes the recent experimental studies on two-phase flows in vertical large-diameter channels, which includes measuring technique and available databases. Then, a comprehensive review of constitutive equations is provided covering flow regime transition criteria, drift-flux correlations, interfacial area concentration correlations and one- and two-group interfacial area transport equation(s), with discussions on typical characteristics of large-diameter channel flows. Recent 1D numerical simulations of large-diameter channel flows is reviewed too. Finally, future research directions are suggested.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.