Refine your search:     
Report No.

Delayed gamma-ray spectroscopy, 1; Development and current status

Rodriguez, D. ; Rossi, F. ; Takamine, Jun ; Koizumi, Mitsuo ; Seya, Michio; Crochemore, J. M.*; Varasano, G.*; Bogucarska, T.*; Abbas, K.*; Pedersen, B.*

The JAEA is collaborating with the EC-JRC to develop a NDA system combining four active techniques to improve safeguards verification. Delayed gamma-ray spectroscopy can determine nuclide ratios by correlating observed fission products' time-dependent, high-energy, $$gamma$$ rays to the sample's complex fission yield. To quantify fissile nuclides of significant interest, the fast neutrons from compact, transportable sources must be thermalized to where the fissile nuclides have large cross-sections while maintaining high fluxes to provide significant signals. Experiments are underway at some facilities to improve DGS, including the PUNITA system at JRC-Ispra. These neutron fluxes and measurement conditions are used to develop a Monte Carlo that will be used to analyze the DGS data by an inverse-MC method. The DGS program described here summarizes the 3-year development to optimize the moderator, perform experiments, and create the IMC in preparation for a demonstration of the technique.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.