Refine your search:     
Report No.

Quantum optimal control of the isotope-selective rovibrational excitation of diatomic molecules

Kurosaki, Yuzuru*; Yokoyama, Keiichi

Electric field of laser pulses which gives maximum selectivity in the isotope-selective rovibrational excitation of lithium chloride molecules is calculated. Applying the optimal control theory, we calculate optimal electric field to produce mixture of LiCl-35 ($$nu$$=0, $$J$$=0) and LiCl-37 ($$nu$$=1, $$J$$=1) from molecular ensemble of LiCl-35 ($$nu$$=0, $$J$$=0) and LiCl-37 ($$nu$$=0, $$J$$=0). As a result, it is found that electric field which permit rotational excitations only gives high yield in the selective excitation compared to the electric field which permit both rotational and vibrational excitations.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.