Refine your search:     
Report No.
 - 

Toroidal angular momentum balance during rotation changes induced by electron heating modulation in tokamak plasmas

Idomura, Yasuhiro   

An electron heating modulation numerical experiment based on a global full-f gyrokinetic model shows that transitions from ion temperature gradient driven (ITG) turbulence to trapped electron mode (TEM) turbulence induced by electron heating generate density peaking and rotation changes. Toroidal angular momentum balance during the rotation changes is revealed by direct observation of toroidal angular momentum conservation, in which in addition to ion turbulent stress, ion neoclassical stress, radial currents, and toroidal field stress of ions and electrons are important. Toroidal torque flipping between ITG and TEM phases is found to be related to reversal of the ion radial current that indicates coupling of particle and momentum transport channels. The ion and electron radial currents are balanced to satisfy the ambipolar condition, and the electron radial current is cancelled by the electron toroidal field stress, which indirectly affects toroidal torque.

Accesses

:

- Accesses

InCites™

:

Percentile:46.05

Category:Physics, Fluids & Plasmas

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.