Refine your search:     
Report No.

Hydrological and climate changes in southeast Siberia over the last 33 kyr

Katsuta, Nagayoshi*; Ikeda, Hisashi*; Shibata, Kenji*; Kokubu, Yoko; Murakami, Takuma*; Tani, Yukinori*; Takano, Masao*; Nakamura, Toshio*; Tanaka, Atsushi*; Naito, Sayuri*; Ochiai, Shinya*; Shichi, Koji*; Kawakami, Shinichi*; Kawai, Takayoshi*

Paleoenvironmental and paleoclimate changes in Siberia were reconstructed by continuous, high-resolution records of chemical compositions from a sediment core retrieved from the Buguldeika Saddle, Lake Baikal, dating back to the last 33 cal. ka BP. The Holocene climate followed by a shift at ca. 6.5 cal. ka BP toward warm and dry, suggesting that the climate system transition from the glacial to interglacial state occurred. In the last glacial period, the deposition of carbonate mud from the Primorsky Range was associated with Heinrich events (H3 and H1) and the Selenga River inflow was caused by meltwater of mountain glaciers in the Khamar-Daban Range. The anoxic bottom-water during Allerod-Younger Dryas was probably a result of weakened ventilation associated with reduced Selenga River inflow and microbial decomposition of organic matters from the Primorsky Range. The rapid decline in precipitation during the early Holocene may have been a response to the 8.2 ka cooling event.



- Accesses




Category:Geography, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.