Maximizing
by tuning nematicity and magnetism in FeSe
S
superconductors
Matsuura, Kohei*; Mizukami, Yuta*; Arai, Yuki*; Sugimura, Yuichi*; Maejima, Naoyuki*; Machida, Akihiko*; Watanuki, Tetsu*; Fukuda, Tatsuo
; Yajima, Takeshi*; Hiroi, Zenji*; Yip, K. Y.*; Chan, Y. C.*; Niu, Q.*; Hosoi, Suguru*; Ishida, Kosuke*; Mukasa, Kiyotaka*; Kasahara, Shigeru*; Cheng, J.-G.*; Goh, S. K.*; Matsuda, Yuji*; Uwatoko, Yoshiya*; Shibauchi, Takasada*
A fundamental issue concerning iron-based superconductivity is the roles of electronic nematicity and magnetism in realising high transition temperature (
). To address this issue, FeSe is a key material, as it exhibits a unique pressure phase diagram involving nonmagnetic nematic and pressure-induced antiferromagnetic ordered phases. However, as these two phases in FeSe have considerable overlap, how each order affects superconductivity remains perplexing. Here we construct the three-dimensional electronic phase diagram, temperature (
) against pressure (
) and iso-valent S-substitution (
), for FeSe
S
. By simultaneously tuning chemical and physical pressures, against which the chalcogen height shows a contrasting variation, we achieve a complete separation of nematic and antiferromagnetic phases. In between, an extended nonmagnetic tetragonal phase emerges, where
shows a striking enhancement. The completed phase diagram uncovers that high-
superconductivity lies near both ends of the dome-shaped antiferromagnetic phase, whereas
remainslow near the nematic critical point.