Refine your search:     
Report No.
 - 

A Scalable and deformable stylized model of the adult human eye for radiation dose assessment

El Basha, D.*; Furuta, Takuya   ; Iyer, S. S. R.*; Bolch, W. E.*

With recent changes in the recommended annual limit on eye lens exposures to ionizing radiation by International Commission on Radiological Protection, there is considerable interest in predictive computational dosimetry models of the human eye and its various ocular structures. Several computational eye models to date have been constructed for this purpose but they are typically constructed of nominal size and of a roughly spherical shape associated with the emmetropic eye. We therefore constructed a geometric eye model that is both scalable (allowing for changes in eye size) and deformable (allowing for changes in eye shape), and that is suitable for use in radiation transport studies of ocular exposures and radiation treatments of eye disease. As an example, electron and photon anterior-posterior radiation transport with the constructed eye model was conducted and analyzed resultant energy-dependent dose profiles. Due to anterior-posterior irradiation, the energy dose response was shifted to higher energy for a larger-size eye or an axially deformed eye in prolate shape because the structures were located in deeper depth compared to the normal eye.

Accesses

:

- Accesses

InCites™

:

Percentile:51.74

Category:Engineering, Biomedical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.