Refine your search:     
Report No.
 - 

Effect of alloying elements on grain boundary sliding in magnesium binary alloys; Experimental and numerical studies

Somekawa, Hidetoshi*; Tsuru, Tomohito   

The effect of alloying elements on grain boundary sliding was systematically investigated using several binary magnesium alloys via both experimental and numerical methods. The alloying element clearly affected damping properties related to grain boundary sliding, as measured by nanoindentation tests. The properties, such as damping capacity and strain rate sensitivity, apparently depended on grain boundary characteristics, i.e., the grain boundary energy. By increasing and decreasing the grain boundary energy, the alloying element was found to play a role in enhancing and suppressing grain boundary sliding, respectively. First-principles calculations revealed that lithium element had a weak bonding to magnesium due to a few operation of electric orbit. On the other hand, rare-earth elements exhibited relatively strong bonding to magnesium, because of electron interactions with the first nearest neighbor site, and tended to prevent grain boundary sliding.

Accesses

:

- Accesses

InCites™

:

Percentile:80.57

Category:Nanoscience & Nanotechnology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.