Refine your search:     
Report No.
 - 

First direct mass measurements of nuclides around $$Z$$ = 100 with a multireflection time-of-flight mass spectrograph

Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki   ; MacCormick, M.*; Miyatake, Hiroari*; Moon, J. Y.*; Morimoto, Koji*; Morita, Kosuke*; Mukai, Momo*; Murray, I.*; Niwase, Toshitaka*; Okada, Kunihiro*; Ozawa, Akira*; Rosenbusch, M.*; Takamine, Aiko*; Tanaka, Taiki*; Watanabe, Yutaka X.*; Wollnik, H.*; Yamaki, Sayaka*

Masses of $$^{246}$$Es, $$^{251}$$Fm and the transfermium nuclei $$^{249-252}$$Md, and $$^{254}$$No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed $$N=152$$ neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of $$^{246}$$Es and $$^{249,250,252}$$Md were measured for the first time. Using the masses of $$^{249,250}$$Md as anchor points for $$alpha$$ decay chains, the masses of heavier nuclei, up to $$^{261}$$Bh and $$^{266}$$Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter $$delta_{2n}$$ derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed $$N=152$$ neutron shell closure for Md and Lr.

Accesses

:

- Accesses

InCites™

:

Percentile:93.36

Category:Physics, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.