Refine your search:     
Report No.

Global kinetic simulations of neoclassical toroidal viscosity in low-collisional perturbed tokamak plasmas

Matsuoka, Seikichi ; Idomura, Yasuhiro  ; Satake, Shinsuke*

In axisymmetric tokamak plasmas, effects of three-dimensional non-axisymmetric magnetic field perturbations caused by error fields etc. have attracted much attention from the view point of the control of the plasma performance and instabilities. Recent studies pointed out that there exists qualitative discrepancy in predicting the collisional viscosity driven by the perturbation between a theoretical bounce-averaged model and a global kinetic simulation. Clarifying the cause of the discrepancy by understanding the underlying mechanism is a key issue to establish a reliable basis for the NTV predictions. In this work, we perform two different kinds of global kinetic simulations for the NTV. As a result, it is first demonstrated that the discrepancy arises owing to the following two mechanisms related to the global particle orbit; (1) the effective magnitude of the perturbation becomes weak due to the loss of the resonant orbit, and (2) the phase mixing along the orbit arises and generates fine scale structures, resulting the damping of the NTV.



- Accesses




Category:Physics, Fluids & Plasmas



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.