Refine your search:     
Report No.
 - 

Atmospheric modeling of $$^{137}$$Cs plumes from the Fukushima Daiichi Nuclear Power Plant; Evaluation of the model intercomparison data of the Science Council of Japan

Kitayama, Kyo*; Morino, Yu*; Takigawa, Masayuki*; Nakajima, Teruyuki*; Hayami, Hiroshi*; Nagai, Haruyasu  ; Terada, Hiroaki   ; Saito, Kazuo*; Shimbori, Toshiki*; Kajino, Mizuo*; Sekiyama, Tsuyoshi*; Dider, D.*; Mathieu, A.*; Qu$'e$lo, D.*; Ohara, Toshimasa*; Tsuruta, Haruo*; Oura, Yasuji*; Ebihara, Mitsuru*; Moriguchi, Yuichi*; Shibata, Tokushi*

We compared seven atmospheric transport model results for $$^{137}$$Cs released during the Fukushima Daiichi Nuclear Power Plant accident. All the results had been submitted for a model intercomparison project of the Science Council of Japan in 2014. We assessed model performance by comparing model results with observed hourly atmospheric concentrations of $$^{137}$$Cs, focusing on nine plumes over the Tohoku and Kanto regions. The results showed that model performance for $$^{137}$$Cs concentrations was highly variable among models and plumes. We also assessed model performance for accumulated $$^{137}$$Cs deposition. Simulated areas of high deposition were consistent with the plume pathways, though the models that best simulated $$^{137}$$Cs concentrations were different from those that best simulated deposition. The ensemble mean of all models consistently reproduced $$^{137}$$Cs concentrations and deposition well, suggesting that use of a multimodel ensemble results in more effective and consistent model performance.

Accesses

:

- Accesses

InCites™

:

Percentile:69.81

Category:Meteorology & Atmospheric Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.