Refine your search:     
Report No.
 - 

Origin of robust nanoscale ferromagnetism in Fe-doped Ge revealed by angle-resolved photoemission spectroscopy and first-principles calculation

Sakamoto, Shoya*; Wakabayashi, Yuki*; Takeda, Yukiharu   ; Fujimori, Shinichi   ; Suzuki, Hakuto*; Ban, Yoshisuke*; Yamagami, Hiroshi; Tanaka, Masaaki*; Oya, Shinobu*; Fujimori, Atsushi*

Ge$$_{1-x}$$Fe$$_x$$ (Ge:Fe) shows ferromagnetic behavior up to a relatively high temperature of 210 K and hence is a promising material for spintronic applications compatible with Si technology. We have studied its underlying electronic structure by soft X-ray angle-resolved photoemission spectroscopy measurements and first-principles supercell calculation. We observed finite Fe 3$$d$$ components in the states at the Fermi level ($$Erm_F$$) in a wide region of momentum space, and the $$Erm_F$$ was located $$sim$$0.35 eV above the valence-band maximum of the host Ge. Our calculation indicates that the $$Erm_F$$ is also within the deep acceptor-level impurity band induced by the strong $$p$$-$$d$$($$t_2$$) hybridization. We conclude that the additional minority-spin $$d(e)$$ electron characteristic of the Fe$$^{2+}$$ state is responsible for the short-range ferromagnetic coupling between Fe atoms.

Accesses

:

- Accesses

InCites™

:

Percentile:39.88

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.