Refine your search:     
Report No.

Sensitivity and uncertainty analysis of $$beta_{rm eff}$$ for MYRRHA using a Monte Carlo technique

Iwamoto, Hiroki ; Stankovskiy, A.*; Fiorito, L.*; Van den Eynde, G.*

This paper presents a nuclear data sensitivity and uncertainty analysis of the effective delayed neutron fraction $$beta_{rm eff}$$ for critical and subcritical cores of the MYRRHA reactor using the continuous-energy Monte Carlo transport code MCNP. The $$beta_{rm eff}$$ sensitivities are calculated by the modified $$k$$-ratio method proposed by Chiba. Comparing the $$beta_{rm eff}$$ sensitivities obtained with different scaling factors $$a$$ introduced by Chiba shows that a value of $$a=20$$ is the most suitable for the uncertainty quantification of $$beta_{rm eff}$$. Using the calculated $$beta_{rm eff}$$ sensitivities and the JENDL-4.0u covariance data, the $$beta_{rm eff}$$ uncertainties for the critical and subcritical cores are determined to be 2.2 $$pm$$ 0.2% and 2.0 $$pm$$ 0.2%, respectively, which are dominated by delayed neutron yield of $$^{239}$$Pu and $$^{238}$$U.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.