Refine your search:     
Report No.

Development of the evaluation tool for air dose rate in forest using a Monte Carlo radiation transport code (PHITS)

Sakuma, Kazuyuki   ; Niizato, Tadafumi  ; Kim, M.  ; Malins, A.  ; Machida, Masahiko  ; Yoshimura, Kazuya  ; Kurikami, Hiroshi  ; Kitamura, Akihiro   ; Hosomi, Masaaki*

We simulated air dose rates using PHITS to consider how the partitioning of radiocesium between the forest canopy, litter layer and soil layer affected air dose rates by perturbing the radiocesium source distribution between different simulations. Transferring radiocesium from the canopy to the litter layer did not affect air dose rates at 1 m above the ground when setting up the simulation with a radiocesium distribution measured in October 2015. This is because there was almost no radiocesium in the canopy at that time. However air dose rates tended to be high near the canopy, and above the canopy up to 200 m altitude, when the simulations were initiated using source distribution data applicable for August-September 2011, due to the larger amount of radiocesium in the canopy at that time. Transferring the radiocesium from the canopy to the litter layer in this case was associated with a three times increase in the air dose rate at 1 m, as the average distance between radiocesium in the forest and 1 m above the ground was shortened. In both cases radiocesium transfer from the litter layer to the underlying soil was associated with a one third to 50% reduction in air dose rates at 1 m, due to the self-shielding effect of soil.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.