Refine your search:     
Report No.
 - 

A New probabilistic evaluation model on weld residual stress

Katsuyama, Jinya  ; Miyamoto, Yuhei*; Yamaguchi, Yoshihito ; Mano, Akihiro ; Li, Y. 

Weld residual stress (WRS) is one of the most important factors with a great deal of uncertainty, which is considered as a driving force for crack growth in the structural integrity assessment of piping welds. For more rational assessments, it is important to consider the uncertainty of WRS in probabilistic fracture mechanics (PFM) analysis. In the existing PFM analysis codes, the uncertainty of WRS is set through statistical process of multiple finite element analysis (FEA) results. This process depends on persons who perform PFM analysis, and it may give different uncertainties. In this study, we developed a new WRS evaluation model based on the Fourier transformation, and the model was introduced into PASCAL-SP which has been developed by Japan Atomic Energy Agency. Through these improvements of the code, the uncertainty of WRS can be taken into account automatically and appropriately by inputting multiple WRS analysis results directly as input data of PFM analysis.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.