Refine your search:     
Report No.

A Computational method for voxel to polygon mesh conversion of anatomic computational human phantoms

Brown, J. L.*; Furuta, Takuya   ; Bolch, W. E.*

Computational human phantoms in a voxelized format have been used in radiation dose assessments with Monte Carlo radiation transport codes. Recently, the transport in human computational phantoms represented by polygon mesh structure becomes possible with the several Monte Carlo codes. Individual organs and body circumferences are better represented by mesh-type human phantom than by voxel-based phantoms. Tremendous number of voxel-based phantoms have been developed from CT or MR data, and thus there is a need for conversion of existing models to mesh-type formats to allow this additional benefit. We therefore developed an algorithm which accurately converts computational voxelized human phantoms into a polygon-mesh format by detecting boundaries of individual organs. The converted polygon-mesh phantoms can be visualized using CAD software as well as they can be used for radiation transport calculation in Monte Carlo codes.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.