Refine your search:     
Report No.

Study on Pu-burner high temperature gas-cooled reactor in Japan; Introduction scenario

Fukaya, Yuji   ; Goto, Minoru  ; Ueta, Shohei   ; Tachibana, Yukio ; Okamoto, Koji*

The research on introduction scenarios of Pu-burner High Temperature Gas-cooled Reactor (HTGR) of Japan has been performed based on the "Long-term Energy Supply and Demand Outlook" released by the Ministry of Economy, Trade and Industry (METI) of Japan in 2015. In the perspective, the electricity generation capacity of nuclear power generation reduces from 50 GWe (peak around 2010) to 30 GWe in 2030. To maintain the capacity, light water reactors (LWRs) should be introduced from 2025 to 2030. After 2030, HTGRs, which are superior to LWRs from the viewpoint of safety and economy, will be introduced to fill the capacity and incinerate plutonium. We assumed introduction of U fueled HTGR as well. The Pu-burner reactor will be introduced with the priority to incinerate separated plutonium by reprocessing. Moreover, we also evaluated hydrogen generation and its effect on CO$$_{2}$$ reduction. As a result, effective plutonium incineration and CO$$_{2}$$ reduction effect are confirmed.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.