Refine your search:     
Report No.
 - 

Impact of irradiation side on neutron-induced single-event upsets in 65-nm Bulk SRAMs

Abe, Shinichiro   ; Liao, W.*; Manabe, Seiya*; Sato, Tatsuhiko   ; Hashimoto, Masanori*; Watanabe, Yukinobu*

Single event upsets (SEUs) caused by secondary cosmic-ray neutrons have recognized as a serious reliability problem for microelectronic devices. Acceleration tests at neutron facilities are convenient to validate soft error rates (SERs) quickly, but some corrections caused from measurement conditions are required to derive realistic SERs at actual environment or to compare other measured data. In this study, the effect of irradiation side on neutron-induced SEU cross sections was investigated by performing neutron transport simulation using PHITS. SERs for 65-nm bulk CMOS SRAMs are estimated using the sensitive volume model. It was found from simulation that SERs for the sealant side irradiation are 30-50% larger than those for the board side irradiation. This difference comes from the difference of production yield and angular distribution of secondary H and He ions, which are the main cause of SEUs. Thus the direction of neutron irradiation should be reported when the result of acceleration tests are published. This result also indicates that SERs can be reduced by equipping device with sealant side facing downward.

Accesses

:

- Accesses

InCites™

:

Percentile:61.94

Category:Engineering, Electrical & Electronic

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.