Refine your search:     
Report No.

Study on neutron beam pulse width dependence in the nuclear fuel measurement by the neutron resonance transmission analysis

Kitatani, Fumito; Tsuchiya, Harufumi; Toh, Yosuke  ; Hori, Junichi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Nakajima, Ken*

As a non-destructive analytical technique for nuclear material in the field of nuclear security and nuclear nonproliferation, a neutron resonance transmission analysis (NRTA) attracts attention of researchers. It is important to downsize a NRTA system when it is deployed at various facilities. For this aim, we have developed a compact NRTA system which utilizes a D-T neutron generator. Its pulse width of 10$$mu$$s is much longer than that of a large electron beam accelerator. It is necessary to understand the influence of pulse widths on the NRTA measurement. Therefore, we conducted the experiments of the simulated nuclear fuel pin samples to evaluate how the NRTA measurement is influenced by the pulse width of neutron beam. Experiments were performed in Kyoto University. The simulated fuel pellet sample was made from metallic powders of Ag (around 1%) and Al (around 99%). The energy of the irradiation neutron is determined by a Time of Flight technique. We used three pulse widths of the neutron beam of 0.1, 1 and 4 $$mu$$s. A resonance dip of $$^{108}$$Ag at 5.19 eV is observed in the all spectra. And the dip of the TOF spectrum shifts towards low energy, with pulse width changed to a longer one. In this work, we confirmed that neutron pulse width affected the NRTA measurement of the fuel pin sample. On the basis of this work, we will be able to quantify the effects of long-pulse width in a resonance analysis.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.