Refine your search:     
Report No.

Effects of ballooning and rupture on the fracture resistance of Zircaloy-4 fuel cladding tube after LOCA-simulated experiments

Yumura, Takanori; Amaya, Masaki

To investigate the relationship between the fracture resistance of a cladding tube and the amount of deformation of the cladding tube due to ballooning and rupture during a loss-of-coolant accident (LOCA), four-point-bending tests were performed using non-irradiated Zircaloy-4 cladding tubes which experienced a LOCA-simulated sequence (ballooning, rupture, high temperature oxidation and quench). According to the obtained results, it was found that the maximum bending stress of the cladding tube after the LOCA-simulated sequence, which was defined as the fracture resistance, correlated to the average thickness of prior-$$beta$$ layer in the cladding tube. Based on the average thickness of prior-$$beta$$ layer, the fracture resistance of the cladding tube with ballooning and rupture was expressed as functions of isothermal oxidation time and temperature and the maximum circumferential strain on the cladding tube.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.