Refine your search:     
Report No.
 - 

Oxygen potential and self-irradiation effects on fuel temperature in Am-MOX

Ikusawa, Yoshihisa; Hirooka, Shun; Uno, Masayoshi*

Research and development of Minor actinides (MAs) bearing MOX fuel for fast reactor has been proceeding from the viewpoint of reducing radioactive waste. In order to develop, MA bearing MOX, it is indispensable to clarify the influence of MA addition on irradiation behavior. The addition of Americium (Am) to MOX affects vapor pressure and thermal conductivity, which are important properties from the perspective of evaluating fuel temperature. This is because vapor pressure affects fuel restructuring, and thermal conductivity affects fuel temperature distribution. Focusing on these physical properties, this study evaluates the influence of Am on fuel temperature using irradiation behavior analysis code to contribute to the development of MA-bearing MOX fuel. An increase in Am content decreases the thermal conductivity and increases the oxygen potential of oxide fuel. Because vapor pressure increases with increasing Am content, pore migration is accelerated, and the central void diameter increases with increasing Am content. As a result, after formation of the central void, the influence of Am content on the fuel center temperature is mild. Alpha particles generated by radioactive decay of transuranium elements cause lattice defects in the oxide fuel pellets. It is well known that this phenomenon, which is called self-irradiation, affects thermal conductivity. Since americium is the typical alpha radioactive nucleus, to evaluate fuel temperature of Am-MOX is necessary to take account of the influence of self-irradiation damage on thermal conductivity. Self-irradiation decreases thermal conductivity, and as the Am content increases, the rate of decrease in thermal conductivity is accelerated. Because it recovers with temperature rise, the decrease in thermal conductivity due to self-irradiation damage has very little effect on fuel center temperature. These results suggest that Am-MOX fuel could be irradiated under the same conditions as conventional MOX fuel.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.