Refine your search:     
Report No.
 - 

Experimental evaluation of effect flowing condition on cavitation bubble growing and collapsing behaviors

Kawamura, Shunsuke; Naoe, Takashi   ; Ikeda, Tsubasa; Tanaka, Nobuatsu*; Futakawa, Masatoshi  

A target vessel enclosing mercury made of stainless steel is used for the J-PARC spallation neutron source. It is severely damaged by the pressure-wave-induced cavitation with injecting intense proton beam. The front end of the target vessel has a double-walled structure with a narrow channel was adopted to the vessel for expecting to reduce cavitation damage. Effect of cavitation damage mitigation in narrow channel has been experimentally demonstrated. However, damage mitigation mechanism is not clarified yet. As a first step of studies to understand the mechanism of cavitation damage mitigation in narrow channel, growth and collapse behaviors of the spark-induced cavitation bubbles under flow condition were observed by using a high-speed video camera. Furthermore, the wall vibration by cavitation bubble collapse was measured by parametrically changing the flow velocity. The experimental results showed that the ejection angle of the microjet ejected by bubble collapsing leaned towards flowing direction as the flow velocity increases. The wall vibration was reduced with increasing flow velocity.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.