Refine your search:     
Report No.
 - 

Experimental evaluation of characteristics of the microbubble generator using swirl flow

Ikeda, Tsubasa; Kogawa, Hiroyuki  ; Naoe, Takashi   ; Kawamura, Shunsuke; Tanaka, Nobuatsu*; Futakawa, Masatoshi  

In a mercury target used for the pulsed spallation neutron source at J-PARC, pressure waves are generated by the rapid thermal expansion of mercury due to the high-intensity pulsed-proton beam bombardment. They induces cavitation, causing severe erosion damage on the mercury enclosure vessel made of stainless steel. Gas microbubbles injection into mercury is one of effective techniques to suppress the pressure. At J-PARC, a swirl-flow bubble-generator has been developed and installed in the mercury target. Increasing the gas void fraction is effective to enhance the suppression effect. In this study, dependencies of the vane angle and reduction rate of the Venturi were parametrically investigated through a water experiment in order to optimize the swirl-flow bubble-generator for decreasing the aspiration pressure without increasing pressure drop. The result showed that the gas aspiration rate of the swirl-flow bubble-generator increased as the reduction rate at the Venturi increased.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.