Refine your search:     
Report No.
 - 

Convergence behavior in line profile analysis using convolutional multiple whole-profile software

Kumagai, Masayoshi*; Uchida, Tomohiro*; Murasawa, Kodai*; Takamura, Masato*; Ikeda, Yoshimasa*; Suzuki, Hiroshi  ; Otake, Yoshie*; Hama, Takayuki*; Suzuki, Shinsuke*

The convergence behavior of the parameters related to microstructural characteristics $$a$$-$$e$$ was studied during optimizations in a common line profile analysis software program based on the convolutional multiple whole profile (CMWP) method. The weighted sums of squared residual (WSSR) was a criterion of the optimization. The parameters $$b$$ and $$d$$, which are related to the dislocation density and to the crystallite size, respectively, strongly affect the line profile shape. Therefore, the distributions of WSSRs on the space parameters $$b$$ and $$d$$ were first observed. The variation trajectory of parameters $$b$$ and $$d$$ during iterative calculations with several values of parameter $$e$$ was then observed, along with the variations when all of the parameters were variable. In the case where only three parameters were variable, we found that a smaller initial value of $$e$$ should be chosen to ensure stability of the calculations. In the case where all parameters were variable, although all of the results converged to similar values, they did not precisely agree. To attain accurate optimum values, a two-step procedure is recommended.

Accesses

:

- Accesses

InCites™

:

Percentile:0.18

Category:Metallurgy & Metallurgical Engineering

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.