Refine your search:     
Report No.

Linear magnetoresistance in a topological insulator Ru$$_2$$Sn$$_3$$

Shiomi, Yuki*; Saito, Eiji

We have studied magnetotransport properties of a topological insulator material Ru$$_2$$Sn$$_3$$. Bulk single crystals of Ru$$_2$$Sn$$_3$$ were grown by a Bi flux method. The resistivity is semiconducting at high temperatures above 160 K, while it becomes metallic below 160 K. Nonlinear field dependence of Hall resistivity in the metallic region shows conduction of multiple carriers at low temperatures. In the high-temperature semiconducting region, magnetoresistance exhibits a conventional quadratic magnetic-field dependence. In the low-temperature metallic region, however, high-field magnetoresistance is clearly linear with magnetic fields, signaling a linear dispersion in the low-temperature electronic structure. Small changes in the magnetoresistance magnitude with respect to the magnetic field angle indicate that bulk electron carriers are responsible mainly for the observed linear magnetoresistance.



- Accesses




Category:Nanoscience & Nanotechnology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.