Refine your search�ソスF     
Report No.

Magnonic noise and Wiedemann-Franz law

Nakata, Koki   ; Onuma, Yuichi*; Matsuo, Mamoru*

We theoretically establish mutual relations among magnetic momentum, heat, and fluctuations of propagating magnons in a ferromagnetic insulating junction in terms of noise and the bosonic Wiedemann-Franz (WF) law. Using the Schwinger-Keldysh formalism, we calculate all transport coefficients of a noise spectrum for both magnonic spin and heat currents, and establish Onsager relations between the thermomagnetic currents and the zero-frequency noise. Making use of the magnonic WF law and the Seebeck coefficient in the low-temperature limit, we theoretically discover universal relations, i.e. being independent of material parameters, for both the nonequilibrium and equilibrium noise, and show that each noise is described solely in terms of thermal conductance.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.