Refine your search:     
Report No.
 - 

Measurement of void fraction distribution in a 4$$times$$4 fuel bundle under high pressure condition for validation of two-phase CFD code

Nagatake, Taku; Shibata, Mitsuhiko; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

In the Fukushima Daiichi Nuclear Power Plant accident, reactor cores were cooled by natural circulation due to pump trip. To investigate the accident progress of the Fukushima Daiichi Nuclear Power Plant, it is important to understand the thermal hydraulic behavior in reactor cores including fuel bundles. Flow rate inside cores was relatively low in the natural circulation conditions, then, thermal-hydraulic behavior in the fuel bundles was different from that in the normal operating conditions. To evaluate thermal hydraulic behavior under the accidental conditions, we are developing the numerical simulation codes named TPFIT and ACE3D. These codes are based on two-phase computational fluid dynamics and can simulate the two-phase flow inside fuel bundles including low flow rate condition. Before applying these codes to the thermal-hydraulic behavior, the applicability of these codes must be confirmed. Then, in this study, in order to obtain a validation data for TPFIT and ACE3D code, thermal hydraulic experiment was performed by using test section with a simulated fuel bundle with 4$$times$$4 unheated rods. In this simulated fuel bundle, there were wire mesh sensors, and void fraction distribution data inside the simulated fuel bundle under high pressure condition (max. 2.6 MPa) was obtained. The one of the advantage of wire mesh sensor is that a void fraction distribution of cross section at the same time can be measured. In this paper, void fraction distribution of two-phase flow in a simulated fuel bundle under high pressure condition are reported.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.