Refine your search:     
Report No.
 - 

Effects of stacking fault energies on formation of irradiation-induced defects at various temperatures in face-centred cubic metals

Nakanishi, Daiki*; Kawabata, Tomoya*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*

By using the six sets of interatomic potentials for face-centredcubic metals that differ in the stacking fault energy (SFE) while most of the other material parameters are kept almost identical, we conducted molecular dynamics simulations to evaluate the effects of SFE on the defect formation process through collision cascades. The ratio of glissile SIA clusters tends to decrease with increasing SFE. This is because perfect loops, the edges of which split into two partial dislocations with stacking fault structures between them in most cases, prefer to form at lower SFEs. The enhanced formation of glissile SIA clusters at lower SFEs can also be observed even at increased temperature.

Accesses

:

- Accesses

InCites™

:

Percentile:64.5

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.