Refine your search:     
Report No.

Effect of nickel concentration on radiation-induced diffusion of point defects in high-nickel Fe-Cr-Ni model alloys during neutron and electron irradiation

Sekio, Yoshihiro ; Sakaguchi, Norihito*

The quantitative evaluation of vacancy migration energies in high nickel model alloy was conducted by analyzing the void denuded zone (VDZ) width formed near grain boundaries under neutron and electron irradiation. The microstructures of Fe-15Cr-xNi (x=15, 20, 25, 30 mass%) alloys that were neutron irradiated at 749 K and electron irradiated at 576 K-824 K were examined. The VDZ widths increased with increasing Ni content in both irradiation experiments, which implies an increase of the vacancy mobility. The vacancy migration energies were estimated from the temperature dependence of the VDZ widths, and the energies were 1.09, 0.97, 0.90, and 0.77 eV for the alloys containing 15, 20, 25, and 30 mass% Ni, respectively. From the obtained energies, the effective vacancy diffusivity and excess vacancy concentration were estimated using the analytical equation of the VDZ width, which quantitatively confirmed the increase of the vacancy mobility with increasing Ni content.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.