Refine your search:     
Report No.

Investigation on heat transfer characteristics of reactor cavity cooling system for HTGR

Akashi, Tomoyasu*; Hosomi, Seisuke*; Ifuku, Hiroki*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.