Refine your search:     
Report No.
 - 

In-situ microscopic observation of crystal growth of graphene using thermal radiation

Terasawa, Tomoo   ; Saiki, Koichiro*; Yasuda, Satoshi   ; Asaoka, Hidehito  

Graphene, monolayer graphite, has been expected as one of the new materials targeting the next generation electronics since its first isolation in 2004, due to the ultrahigh carrier mobility up to 100,000 cm$$_{2}$$/Vs and high transparency of 97.7%. The high transparency of graphene make it invisible on various substrates. Particularly, graphene on Cu, one of the common growth substrates for high-quality graphene, cannot be observed by optical microscopes. Here, we report the optical microscopic method to visualize graphene using thermal radiation. We observed a Cu surface by a zoom-lens and a CMOS camera during the growth of graphene by chemical vapor deposition. When graphene was grown on Cu substrates, the thermal radiation intensity increased at the area covered with graphene. The thermal radiation contrast between Cu surfaces with and without graphene showed that the thermal radiation intensity increased as the number of graphene layers in a layer-by-layer manner. We quantitatively analyzed the thermal radiation contrasts at various temperatures. We found the thermal radiation contrast was independent from the sample temperature. This result suggests that the emissivity of graphene is independent from the temperature, which is consistent with the theory of the optical properties of graphene. Our findings are essential for the discussion of the thermal radiation from the atomically thin materials including graphene.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.