Refine your search:     
Report No.
 - 

Observation of aerosol particle behavior near gas-liquid interface

Uesawa, Shinichiro ; Miyahara, Naoya; Horiguchi, Naoki  ; Yoshida, Hiroyuki ; Osaka, Masahiko 

Air pollution control equipment with spraying liquid in aerosol is used in severe accidents of nuclear power plants to remove radioactive aerosol particles. The removal performance of the equipment has been confirmed based on actual-scale tests. However, unexpected situations may happen in severe accidents due to large-scale disasters. We have developed a numerical analysis method for evaluating radioactive aerosol particle removal performance to optimize the performance and the design. As a part of the development of the numerical analysis, in order to grasp the capturing mechanism of the aerosol particle deposition on a gas-liquid interface, we performed a direct observation of aerosol particle behavior on the gas-liquid interface. As the capturing mechanism on the gas-liquid interface, the particle penetration into liquid, the deposition on the gas-liquid interface and the deposition on the interface after moving to slide on the interface were confirmed in the experiment. In addition, the observation result indicated that the penetration was observed with the higher Stokes number and the deposition was observed with the lower Stokes number. However, for the lower Stokes number, the case where particles were not captured on the gas-liquid interface was also confirmed. Thus, the Stokes number is one of the important parameters for the aerosol particle capturing by gas-liquid interface.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.