Refine your search:     
Report No.
 - 

Electron-tracking Compton camera imaging of technetium-95m

Hatsukawa, Yuichi*; Hayakawa, Takehito*; Tsukada, Kazuaki  ; Hashimoto, Kazuyuki*; Sato, Tetsuya   ; Asai, Masato  ; Toyoshima, Atsushi; Tanimori, Toru*; Sonoda, Shinya*; Kabuki, Shigeto*; Kimura, Hiroyuki*; Takada, Atsushi*; Mizumoto, Tetsuya*; Takaki, Seiya  

Imaging of $$^{95m}$$Tc radioisotope was conducted using an electron tracking-Compton camera (ETCC). $$^{95m}$$Tc emits 204, 582, and 835 keV $$gamma$$ rays, and was produced in the $$^{95}$$Mo(p,n)$$^{95m}$$Tc reaction with a $$^{95}$$Mo-enriched target. The recycling of the $$^{95}$$Mo-enriched molybdenum trioxide was investigated, and the recycled yield of $$^{95}$$Mo was achieved to be 70% - 90%. The images were obtained with each of the three $$gamma$$ rays. Results showed that the spatial resolution increases with increasing $$gamma$$-ray energy, and suggested that the ETCC with high-energy $$gamma$$-ray emitters such as $$^{95m}$$Tc is useful for the medical imaging of deep tissue and organs in the human body.

Accesses

:

- Accesses

InCites™

:

Percentile:30.05

Category:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.