Refine your search:     
Report No.

The Effect of stacking fault energy on interactions between an edge dislocation and a spherical void by molecular dynamics simulations

Asari, Keisuke*; Hetland, O. S.*; Fujita, Satoshi*; Itakura, Mitsuhiro; Okita, Taira*

Molecular dynamics simulations were conducted using a set of six interatomic potentials for FCC metals that differed only in stacking fault energy (SFE), to clarify the effect of SFE on interactions between a dissociated edge dislocation and a void. There are two different types of interaction mechanism: separate depinning of the individual partial dislocations and almost simultaneous depinning of the combined partial dislocations. The interaction mechanism depends on both the SFE and void size, and changes the absolute value of the critical resolved shear stress (CRSS) and its dependence on the SFE. In the separate depinning case, the CRSS is relatively low and is almost independent of the SFE, while in the simultaneous case, the CRSS is increases with SFE. The void size for which the change in interaction mechanism occurs increases with decreasing SFE.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.