Refine your search:     
Report No.

Numerical study on the potential of cavitation damage in a lead-bismuth eutectic spallation target

Wan, T.; Naoe, Takashi  ; Kogawa, Hiroyuki; Futakawa, Masatoshi; Obayashi, Hironari; Sasa, Toshinobu

To perform basic R&D for future Accelerator-driven Systems (ADSs), Japan Proton Accelerator Research Complex (J-PARC) will construct an ADS target test facility. A Lead-Bismuth Eutectic (LBE) spallation target will be installed in the target test facility and bombarded by pulsed proton beams (250 kW, 400 MeV, 25 Hz, and 0.5 ms pulse duration). To realize the LBE spallation target, cavitation damage due to pressure changes in the liquid metal should be determined preliminarily because such damage is considered very critical from the viewpoint of target safety and lifetime. In this study, cavitation damage due to pressure waves caused by pulsed proton beam injection and turbulent liquid metal flow, were studied numerically from the viewpoint of single cavitation bubble dynamics. Specifically, the threshold of cavitation and effects of flow speed fluctuation on cavitation bubble dynamics in an orifice structure, were investigated in the present work. The results show that the LBE spallation target will not undergo cavitation damage under normal nominal operation conditions, mainly because of the long pulse duration of the pulsed proton beam and the low liquid metal flow velocity. Nevertheless, the possibility of occurrence of cavitation damage, in the orifice structure under certain extreme transient LBE flow conditions cannot be neglected.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.