Refine your search�ソスF     
Report No.

Study of neutron-nuclear spin correlation term with a polarized xenon target

Sakai, Kenji ; Oku, Takayuki   ; Okudaira, Takuya; Kai, Tetsuya   ; Harada, Masahide   ; Hiroi, Kosuke  ; Hayashida, Hirotoshi*; Shimizu, Hirohiko*; Yamamoto, Tomoki*; Ino, Takashi*; Hirota, Katsuya*

In neutron fundamental physics, a study of correlation term $${bf s}cdot{bf I}$$ of a neutron spin s and a target nuclear spin $${bf I}$$ is important because the $${bf s}cdot{bf I}$$ term interferes to parity non-conserving (PNC) and time reversal non-conserving (TRNC) terms. For this study, a xenon (Xe) is an interesting nucleus because it has been observed an enhancement of PNC effect around neutron resonance peaks, and polarizes up to $$10^{-2}sim 10^{-1}$$ by using a spin exchange optical pumping (SEOP) method. We attempted to develop a polarized Xe target in a compact ${it in situ}$ SEOP system and measure neutron polarizing ability caused by the $${bf s}cdot{bf I}$$ term at a 9.6 eV $$s$$-wave resonance peak of $$^{129}$$Xe, by detecting change $$Delta R_P$$ of a ratio between neutron transmissions with the polarized and unpolarized Xe target. As preliminary results, we observed a signified value of $$Delta R_{P} approx 0.01$$ after demonstrating that our apparatus could distinguish Doppler broadening effect as systematic error.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.